### Radiation Epidemiology Course

### Nuclear Accidents Part II: Chornobyl

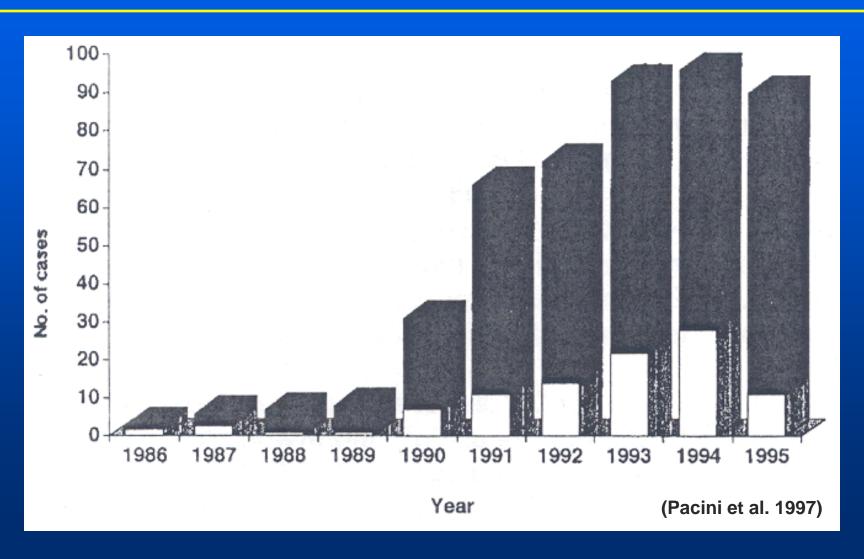
Maureen Hatch & Andre Bouville May 11, 2004

# Part I: Thyroid Cancer

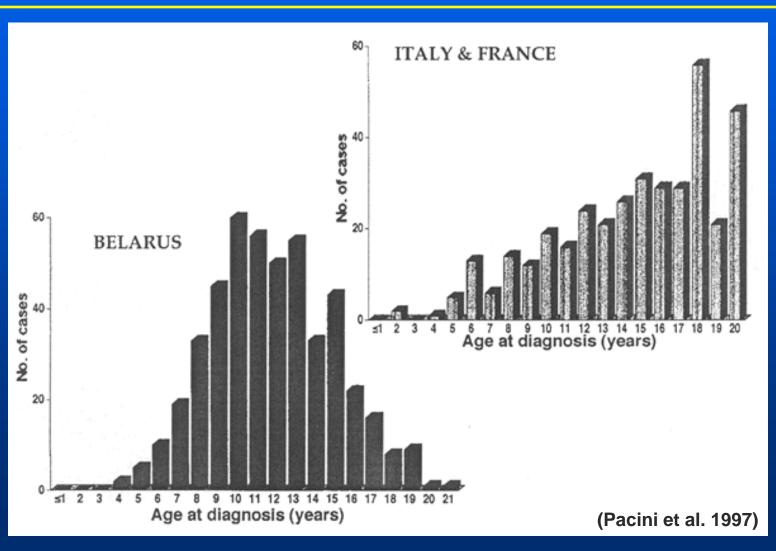
### Thyroid Cancer Among Exposed Children

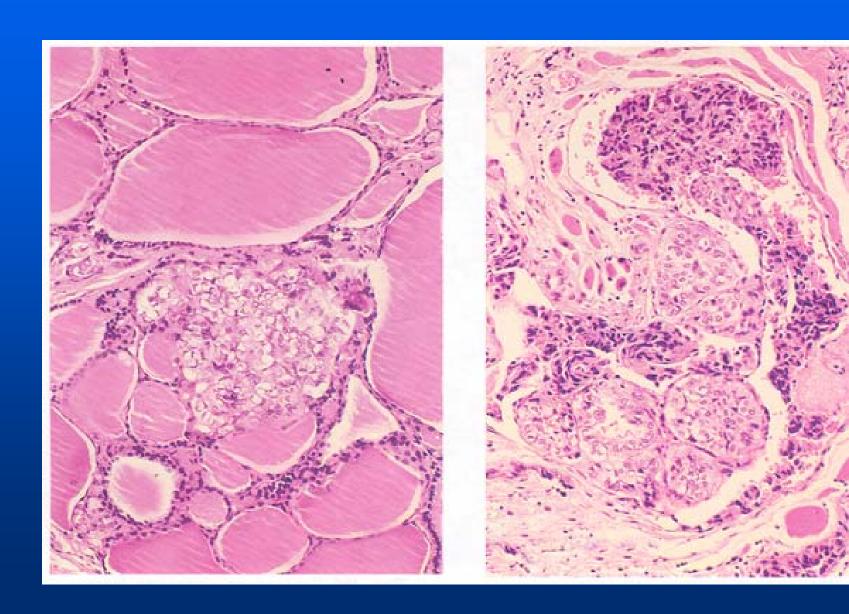
- Why Thyroid Cancer?
  - Thyroid concentrates iodine (>> avg. body dose)
  - Iodine deficient area (however, treatment with <sup>131</sup>I apparently not a risk factor)
- Why Children?
  - Rapid thyroid growth
  - **■** Small thyroid mass (inversely proportional to dose)
  - More milk consumption

### Study Designs


- Ecologic Studies of temporal and geographic trends
- Analytic studies (case-control, cohort)

# Studies of Temporal and Geographic Trends


### **Descriptive Studies of Children < 18**


- ~2000 cancers, 1990-98
- → ≥ 4-fold increase over earlier period, greatest in Gomel
- Short latency
- >92% papillary type (67% normative)
- Aggressive (solid or solid-follicular variant)

### 



# Age Distribution at the time of diagnosis of thyroid cancer patients from Belarus and from Italy and France





### Molecular Biology

- RET PTC rearrangements
- Tyrosine kinase growth factor

# Real effect or Screening effect?

### **Analytic Studies**

### Case Control Study in Belarus evaluating pathway to diagnosis

|                                                    | Estimated Dose from <sup>131</sup> I (Gy) |            |        |                  |
|----------------------------------------------------|-------------------------------------------|------------|--------|------------------|
|                                                    | <0.3                                      | 0.3 – 0.99 | 1.00 + | OR<br>(95% CI)   |
| Routine screening                                  |                                           |            |        | 2.08 (1.0 – 4.3) |
| Cases                                              | 32                                        | 16         | 15     |                  |
| Controls                                           | 43                                        | 16         | 4      |                  |
| Incidental finding                                 |                                           |            |        | 8.31 (1.1 – 5.8) |
| Cases                                              | 13                                        | 4          | 2      |                  |
| Controls                                           | 18                                        | 1          | 0      |                  |
| Enlarged or nodular thyroid                        |                                           |            |        | 3.63 (0.7 – 1.8) |
| Cases                                              | 19                                        | 6          | 0      |                  |
| Controls                                           | 23                                        | 2          | 0      |                  |
| Incidental finding and enlarged or nodular thyroid |                                           |            |        | 5.12 (1.4 – 1.8) |
| Cases                                              | 32                                        | 10         | 2      |                  |
| Controls                                           | 31                                        | 3          | 0      |                  |

(Astakhova, et al. 1998)

# Number of thyroid cancer cases after the Chornobyl accident by year (Belarus)

| Year  | Total |
|-------|-------|
| 1986  | 3     |
| 1987  | 12    |
| 1988  | 9     |
| 1989  | 14    |
| 1990  | 38    |
| 1991  | 77    |
| 1992  | 100   |
| 1993  | 114   |
| 1994  | 146   |
| 1995  | 137   |
| 1996  | 156   |
| 1997  | 150   |
| 1998  | 165   |
| 1999  | 203   |
| 2000  | 171   |
| Total | 1,495 |

(Henigsberg, et al. 2002)

### Ongoing Studies of Thyroid Cancer in Children

Ongoing studies include a single longitudinal cohort study - a collaboration between NCI, Columbia, Ukraine, and Belarus – and several case-control studies. They focus on the influence of age at exposure, gender, and iodine deficiency (among other variables) on the risk associated with <sup>131</sup>I exposure. All use individualized dose estimates.

### Ongoing Studies

# Ukrainian-American Thyroid Study Belarusian-American Thyroid Study

A collaboration between scientists from Ukraine, Belarus, NCI and Columbia University







### Approach

- Longitudinal cohort study of exposed children involving detailed screening examinations of the thyroid gland every 2 years
  - Palpation
  - Ultrasound
  - Thyroid hormone and iodine measurements

# Description of Cohorts by Demographic Variables

|                              | Belarus |       | Ukraine |       |  |
|------------------------------|---------|-------|---------|-------|--|
|                              | N       | %     | N       | %     |  |
| Total                        | 11,918  | 100.0 | 13,243  | 100.0 |  |
| Gender                       |         |       |         |       |  |
| Female                       | 6,130   | 51    | 6,275   | 51    |  |
| Male                         | 5,788   | 49    | 6,518   | 49    |  |
| Age on 26 April 1986 (years) |         |       |         |       |  |
| 0-4                          | 3,866   | 33    | 4,037   | 31    |  |
| 5-9                          | 3,500   | 29    | 3,836   | 29    |  |
| 10-14                        | 3,109   | 26    | 4,145   | 31    |  |
| ≥ 15                         | 1,443   | 12    | 1,225   | 9     |  |

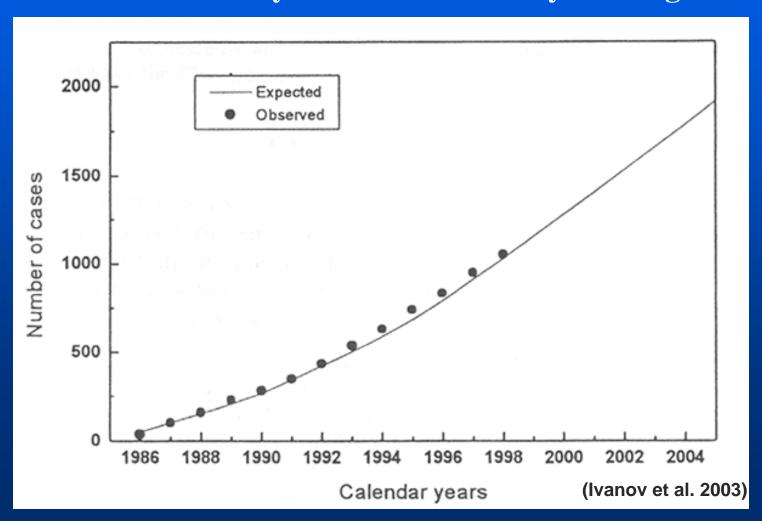
### Individual Dose Estimates

- Thyroid activity measurement
- Dosimetry questionnaire
- Ecologic Model

**Preliminary Estimates:** 

Median: 0.3 Gy

Range: 1 mGy - 40 Gy


### In Utero Substudy

- 1000 'exposed'
- 1000 'unexposed'

Benign and malignant nodules

### Thyroid Cancer in Adults

Prediction of thyroid cancer incidence among adolescents and adults at the Chernobyl accident in the Bryansk region



### Summary (1)

- Thyroid cancer increased in exposed children, with risk greatest at youngest ages
- Tumors aggressive
- Increases still being seen
- Possible changes in histology and morphology over time

### Summary (2)

- Molecular biology not certain and not certain if there is a Chornobyl footprint
- Risk of thyroid cancer in adults uncertain; may differ for clean-up workers and general population

# Importance of Chornobyl Studies

Will provide data on dose-response curve at low doses and low dose rates



### Childhood Leukemia

# **Ecological Studies of temporal and geographical trends**

- Cancer registries in 23 countries
- Dose estimated from fallout and intake of contaminated food
- Increases post-Chornobyl
- Excess not correlated with extent of contamination

(Parkin et al. 1993, 1996)

### Childhood Leukemia

### **Analytic Studies**

- Case-control study in contaminated oblasts of Ukraine
- Controls from different rayon than cases
- Increases in ALL (1993-97) and AML (1987-1982)
- Only 36% of cases included

(Noshchenko et al., 2002)

### Leukemia in Children

- Sole analytic study unconvincing due to potential selection bias
- Ecologic studies show temporal pattern but no geographic trend
- Evidence not strong for or against an association

# In Utero Exposure and Leukemia Risk

# **Ecological Studies of temporal and geographical trends**

 Increase in risk for relevant birth cohort in Greece (July 1986 – December 1987)

(Petridou et al. 1996)

Smaller increase in Germany

(Steiner et al. 1998)

♦ Increase in Belarus but trend weaker than in Greece (Ivanov et al. 1998)

# Exposed vs. Unexposed Birth Cohorts

| Region          | RR (95% CI)     |
|-----------------|-----------------|
| Greece          | 2.6 (1.4 – 5.1) |
| Germany         | 1.5 (1.0 – 2.2) |
| Belarus         | 1.3 (0.8 – 2.1) |
| Mogilev & Gomel | 1.5 (0.6 – 3.6) |

(Ivanov et al. 1998)

### Ecologic Studies (cont'd)

- Comparison of cumulative incidence rates in children born in 1986 living in a contaminated vs. uncontaminated oblast in Ukraine
- Rates higher in exposed oblast

(Noshchenko et al. 2002)

# Cumulative incidence rates per 100,000, RR (95% CI) for leukemia by region and time, sexes combined

|                                               | 1987-1991       | 1992-1996                             |  |  |
|-----------------------------------------------|-----------------|---------------------------------------|--|--|
| Leukemia, all types, in children born in 1986 |                 |                                       |  |  |
| Zhitomir<br>('contaminated')                  | 11.2            | 4.4                                   |  |  |
| Poltava<br>('uncontaminated')                 | 5.7             | 0.8                                   |  |  |
| Rate Ratio                                    | 1.9 (0.8 – 4.8) | <b>5.5</b> ( <b>0.6</b> – <b>47</b> ) |  |  |

(Noshchenko et al. 2002)

# In Utero Exposure and Leukemia Risk

Some suggestive data but limitations prevent drawing strong conclusions

### Adult Leukemia

### Clean-up Workers: Ecologic Studies

- No increased risk (Tukor & Dzagoeva 1993)
- No dose response (Shantyr et al. 1997)
- No trend with time (Buzunov et al 1996)
- ♦ Increased risks (Ivanov et al. 1997; 2003)

### Adult Leukemia

### Clean-up Workers: Analytic Studies

- 1 case-control study (n=34 (non-CLL) cases)
- Controls matched on age, region
- RR elevated with duration of exposure (3.1) and dose (3.7) but not statistically significant

(Konogorov et al 2000)

### Adult Leukemia

### General Population: Ecologic Studies

No evidence of an increase in most contaminated regions

(Ivanov et al. 1997; Bebeshko et al. 1997)

No trend with time

(Prisyazhniuk et al. 1995)

### Leukemia in Adults

- No evidence of an association in the general population
- Some slight evidence in clean-up workers (screening effect?)

### Ongoing Studies

Ukrainian-American Study of Leukemia and Related Diseases Among Clean-up Workers from Ukraine Following the Chornobyl Accident

A collaboration among scientists from Ukraine, NCI and Columbia University







### Study Design

- Cohort of 110,645 male clean-up workers from 30 km zone around plant, resident in study area
- Cases from all relevant sources assembled into a leukemia registry
- Five controls per case matched on age and area of residence
- Estimates of individual dose from detailed dosimetry interview

## Bone Marrow Dose Estimates: Using RADRUE

- RADRUE (Radiation Dose Reconstruction with Uncertainty Estimates) time and motion analysis
- April 26, 1986 December 31, 1990,
   70 km zone
- Mission, episode, event, frame
- **Expert assessment**

### Preliminary Review

- Leukemia (n=110)
- MM (n=18) and MDS (n=4)

### Ongoing Case-Control Studies

### **Including:**

- IARC
- Consortium

### Other Avenues of Research

- Other cancers:
  - e.g. breast
- Non-cancer endpoints:
  - e.g., benign thyroid conditions